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Abstract. Results for the light meson mass spectrum from a Bethe-Salpeter approach are presented.
The results obtained in the standard framework are Poincarécovariant and compare favourably
with lattice results. Using a more sophisticated scheme, the pseudoscalar, vector and 1++ (a1/ f1)
axialvector charge eigenstate masses are unaltered whereas the 1+− (b1/h1) axialvector meson mass
is raised.

The Bethe-Salpeter equation [BSE] is the fully relativistic description of the two-body
bound state problem. It has been found in the last decade thatthe ladder truncation of
the BSE, using as input the quark propagators derived from the rainbow truncation of
the Schwinger-Dyson equation [DSE], gives rise to a good description of the light flavor
non-singlet pseudoscalar and vector mesons [1]. The underlying mechanism for this is
chiral symmetry manifested through the flavor non-singlet axialvector Ward-Takahashi
identity [AXWTI]. By ensuring that the kernels of both equations respect the AXWTI,
it is shown that the pion emerges as both a bound state of massive constituents and as an
almost massless Goldstone boson of the broken chiral symmetry [2].

The ladder truncation of the homogeneous BSE for quark-antiquark mesons is written
(working in Euclidean space with Hermitian Dirac matrices obeying{γµ ,γν} = 2δµν ):

Γ(p;P) = −
4
3

∫

d4k
(2π)4g2∆µν(p−k)γµS(k+)Γ(k;P)S(k−)γν , (1)

whereΓ is the Bethe-Salpeter amplitude,k+ = k + ξP and k− = k+ (ξ − 1)P with
ξ = [0,1] the momentum sharing parameter between the two quarks. Invariance of the
resulting observables with respect toξ is a reflection of Poincaré covariance. The total
momentumP = p+ − p− is such that the equation is solved forP2 = −M2 whereM is
the mass of the meson. In Eq. (1), the dressed quark propagators are the solution of the
rainbow quark DSE

S−1(p) = ı /p+m+
4
3

∫

d4k
(2π)4g2∆µν(p−k)γµS(k)γν , (2)

wherem is the current mass parameter of the quark; the two truncations being consistent
with the AXWTI. The effective interactiong2∆µν(q) has the following form [3]:

g2∆µν(q) = tµν(q)4π2D
q2

ω2 exp

(

−
q2

ω2

)

(3)
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FIGURE 1. Comparison of BSE and lattice results for pseudoscalar and vector meson masses. The
lattice data are from CP-PACS (unquenched) [4].

(tµν is the transverse projector). The two parametersω andD set the length scale and
magnitude of the interaction. The integrals are UV convergent and all renormalisation
constants are unity. The BSE is solved by writing the amplitudeΓ in its most general
form consistent with the desired parity and charge conjugation properties and expanding
the resulting scalar functions as a Chebyshev series in the angular variable. Numerical
results are shown in Table 1 using the parametersω = 0.5GeV, D = 16GeV−2, mu =
md = 5MeV, ms = 115MeV. One can see that the pseudoscalar and vector meson results
are in good agreement, but the axialvector mesons are∼ 300MeV too light. Varying the
momentum sharing parameter (ξ ) one finds that for sufficient numbers of Chebyshev
moments (N ≥ 6), the mass results are stable, demonstrating the Poincarécovariance
[3].

TABLE 1. Mass results (inGeV) for the light meson
masses using the rainbow/ladder truncation.

JPC MBS Mexp

uu us ss uu us ss

0−+ 0.137 0.492 – 0.135 0.498 –
1−− 0.758 0.946 1.078 0.770 0.892 1.020
1+− 0.915 1.075 1.233 1.230 1.270 1.170?
1++ 0.936 1.075 1.291 1.230 1.270 1.282

It is interesting to compare the BSE results for the pseudoscalar and vector masses
with lattice results at different quark masses. Figure 1 shows a comparison ofMV vs.
MPS using unquenched CP-PACS data [4] and the BSE results withω = 0.45GeV,
D = 24.4GeV−2. There is good agreement between the lattice and the BSE results over
a wide range ofMPS.

To improve the description of the axialvector mesons one must augment the truncation



scheme to include nontrivial vertex corrections whilst maintaining the AXWTI. As an
initial attempt we consider an abelian, one-loop correction to the quark-gluon vertex
with the following form [5]:

Γµ(k, p) = γµ +
1
6

∫

d4q
(2π)4γρS(k+q)γµS(p+q)γλ g2∆ρλ (q) . (4)

To make the system tractable, the interaction in the vertex correction is taken as
g2∆ρλ (q) = (2π)4Gδ 4(q)tρλ (q) which reduces the integral to an algebraic expression.
The parameterG is tuned such that the integrated strengths of∆ and∆ are equal. At
spacelike momenta the quark propagator is only slightly modified from the rainbow case
but this is not true at general complex momenta due to the different analytic structures
introduced by theδ -function. As before, one can construct an appropriate kernel for the
BSE which preserves the AXWTI and the charge conjugation symmetry. The results
show that the charge eigenstate pseudoscalar, vector and 1++ (a1/ f1) axialvector meson
masses are largely unaltered but the 1+− (b1/h1) axialvector mass increases∼ 300MeV,
comparing reasonably with the experimental observation [5].

To summarize, the BSE – when using input from the quark DSE whilst respecting the
AXWTI – provides a powerful framework to study the meson massspectrum. There are
two main areas with which to proceed: the first being the inclusion of more sophisticated
truncations of the kernels; an exploratory attempt being described here. The second area
to investigate is to include a mechanism for dynamical mesondecay and multiquark
states. Such an effort has been started in ref. [6].
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